Category: Database Partitioning&Scaling

[转]分库分表无限扩容 0

[转]分库分表无限扩容

正常情况下的服务演化之路 让我们从最初开始。 1、单体应用 每个创业公司基本都是从类似 SSM 和 SSH 这种架构起来的,没什么好讲的,基本每个程序员都经历过。 2、RPC 应用 当业务越来越大,我们需要对服务进行水平扩容,扩容很简单,只要保证服务是无状态的就可以了,如下图: 当业务又越来越大,我们的服务关系错综复杂,同时,有很多服务访问都是不需要连接 DB 的,只需要连接缓存即可,那么就可以做成分离的,减少 DB 宝贵的连接。如下图: 我相信大部分公司都是在这个阶段。Dubbo 就是为了解决这个问题而生的。 3、分库分表 如果你的公司产品很受欢迎,业务继续高速发展,数据越来越多,SQL 操作越来越慢,那么数据库就会成为瓶颈,那么你肯定会想到分库分表,不论通过 ID hash 或者 range 的方式都可以。如下图: 这下应该没问题了吧。任凭你用户再多,并发再高,我只要无限扩容数据库,无限扩容应用,就可以了。 这也是本文的标题,分库分表就能解决无限扩容吗? 实际上,像上面的架构,并不能解决。 其实,这个问题和 RPC 的问题有点类似:数据库连接过多!!! 通常,我们的 RPC...

[转]跨库分页的几种常见方案 0

[转]跨库分页的几种常见方案

为什么需要研究跨库分页? 互联网很多业务都有分页拉取数据的需求,例如: (1)微信消息过多时,拉取第N页消息; (2)京东下单过多时,拉取第N页订单; (3)浏览58同城,查看第N页帖子;

[转]分库分表如何做到永不迁移数据和避免热点? 0

[转]分库分表如何做到永不迁移数据和避免热点?

一、前言 中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。

[总结]分表分库后迁移和部署上线 0

[总结]分表分库后迁移和部署上线

如何部署 停机部署法 大致思路就是,挂一个公告,半夜停机升级,然后半夜把服务停了,跑数据迁移程序,进行数据迁移。

[转]腾讯云如何应对日益膨胀的数据流量? 0

[转]腾讯云如何应对日益膨胀的数据流量?

任何看到显著增长的应用程序或网站,最终都需要进行扩展。以适应流量的增加和确保数据安全性和完整性的方式进行扩展,对于数据驱动的应用程序和网站来说十分重要。人们可能很难预测某个网站或应用程序的流行程度,也很难预测这种流行程度会持续多久——这就是为什么有些机构选择“可动态扩展的”数据库架构的原因。 本文将讨论一种“可动态扩展的”数据库架构:分片数据库。

0

[转]高可用简史

分布式是如何进入数据库领域的? 我曾经访问过一个有“营业时间”的网站,它只在某些时间段才“开放”。我因此感到困惑,还有点沮丧。计算机可以运行一整天,为什么这个网站就不可以呢?可能我已经习惯了互联网那种令人难以置信的可用性保证。 然而,在互联网出现之前,全天候可用性的概念还“不成气候”。可用性虽然令人期待,但还没有到非要不可的程度。我们只在有需要时才使用电脑,它们不会为了一个极小可能出现的请求而等待。随着互联网的出现和发展,之前不太常见的本地凌晨 3 点请求变成了全球性的主要营业时间点,确保计算机能够处理这些请求就变得非常重要。

[转]db如何快速回滚+恢复,DBA的神技能 0

[转]db如何快速回滚+恢复,DBA的神技能

技术人如果经常线上操作DB,河边走久了,难免出现纰漏: update错数据了 delete错数据了 drop错数据了 咋办?找DBA恢复数据呗,即使恢复不了,锅总得有人背呀。 画外音:把数据全删了,怎么办,怎么办?

Ähnliches Foto 0

[总结]分表分库时机选择及策略

一. 分表 应用场景: 对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问。采用Master-Slave复制模式的MySQL架构,只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Slave的数量受到Master能力和负载的限制。 因此,需要对数据库的吞吐能力进行进一步的扩展,以满足高并发访问与海量数据存储的需要!

[转]冗余数据一致性,到底如何保证? 0

[转]冗余数据一致性,到底如何保证?

一,为什么要冗余数据 互联网数据量很大的业务场景,往往数据库需要进行水平切分来降低单库数据量。 水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。 此时常见的架构设计方案,是使用数据冗余这种反范式设计来满足分库后不同维度的查询需求。