Tagged: Flink

0

[转]Flink靠什么征服阿里工程师?

时下,谈及大数据,不得不提到热门的下一代大数据计算引擎 Apache Flink(以下简称 Flink)。 本文将结合 Flink 的前世今生,从业务角度出发,向大家娓娓道来:为什么阿里选择了 Flink? 为什么阿里选择了 Flink 随着人工智能时代的降临,数据量的爆发,在典型的大数据的业务场景下数据业务最通用的做法是:选用批处理的技术处理全量数据,采用流式计算处理实时增量数据。 在绝大多数的业务场景之下,用户的业务逻辑在批处理和流处理之中往往是相同的。 但是,用户用于批处理和流处理的两套计算引擎是不同的。因此,用户通常需要写两套代码。毫无疑问,这带来了一些额外的负担和成本。 阿里巴巴的商品数据处理就经常需要面对增量和全量两套不同的业务流程问题,所以阿里就在想,我们能不能有一套统一的大数据引擎技术,用户只需要根据自己的业务逻辑开发一套代码。 这样在各种不同的场景下,不管是全量数据还是增量数据,亦或者实时处理,一套方案即可全部支持,这就是阿里选择 Flink 的背景和初衷。 目前开源大数据计算引擎有很多选择,流计算如 Storm、Samza、Flink、Kafka Stream 等,批处理如 Spark、Hive、Pig、Flink 等。 而同时支持流处理和批处理的计算引擎,只有两种选择: Apache Spark。 Apache Flink。 从技术,生态等各方面的综合考虑。首先,Spark 的技术理念是基于批来模拟流的计算。而 Flink 则完全相反,它采用的是基于流计算来模拟批计算。 从技术发展方向看,用批来模拟流有一定的技术局限性,并且这个局限性可能很难突破。 而...

[转]Flink靠什么征服饿了么工程师 0

[转]Flink靠什么征服饿了么工程师

本文将为大家展示饿了么大数据平台在实时计算方面所做的工作,以及计算引擎的演变之路,你可以借此了解 Storm、Spark、Flink 的优缺点。如何选择一个合适的实时计算引擎?Flink 凭借何种优势成为饿了么首选?本文将带你一一解开谜题。 Please follow and like us:0