Category: Java Architecture
微服务是个说的挺长时间的概念,也是比较成熟的技术体系。像 Spring Cloud,甚至提供了微服务所需要的全套框架,包括注册中心 (Eureka)、配置中心 (Config)、断路器 (Hytrix)、API 网关 (Zuul) 等组件。微服务体系庞杂,每个组件都能独自成章。本文作者仅从个人的经验和实践出发,谈了谈自己对微服务及其部分内涵的思考和理解。 作者张轲目前任职于杭州大树网络技术有限公司,担任首席架构师,负责系统整体业务架构以及基础架构,熟悉微服务、分布式设计、中间件领域,对运维、测试、敏捷开发等相关领域也有所涉猎。
1. 集成Redis 首先在pom.xml中加入需要的redis依赖和缓存依赖
1. 2. 一、MQ简介 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。 使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ 3. 二、消息队列应用场景 以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。
Redis 通常不会被用作主要的数据存储,但它在存储和访问可容忍丢失的临时数据(如度量指标、会话状态、缓存)方面却独有长处,并且速度非常快,不仅提供了最佳性能,还内置了一组非常有用的数据结构。它是现代技术栈中最常见的主要部件之一。 Stripe(一家做支付的硅谷创业公司)的速率限定器就是基于 Redis 构建的,这些限速器运行在一个 Redis 实例上。Redis 主服务器有一些用于失效备援的追随者,不过在任何时候,都只有一个节点在处理读写操作。 各种消息来源声称,一个 Redis 节点每秒可以处理百万次操作。尽管我们的操作没有那么多,但也不会很少。每个速率限定器都需要运行多个 Redis 命令,而每个 API 请求都要通过很多个速率限定器。所以,每个节点每秒钟需要处理数万次到数十万次的操作。 如果节点出现饱和,就会不断出现故障。我们的服务可以容忍 Redis 的不可用,因此大多数情况下是没有问题的,但在某些情况下,问题的严重程度会升级。我们最后通过迁移到包含 10 节点的 Redis 集群来解决这个问题。对性能的影响可以忽略不计,重要的是现在我们可以实现水平可伸缩。
在日常 Java 的开发中,性能调优肯定是很多人不能绕开的一个环节。而其中最简单,也是最基础的一个问题就是如何定位消耗 CPU 最多的线程。这篇文章中你假笨以一个简单的 Test 例子为蓝本,给各位总结了分析这类问题的常用『套路』。
今天和大家简单聊聊MySQL的约束主键与唯一索引约束: PRIMARY KEY and UNIQUE Index Constraints 文章不长,保证有收获。
第一篇,说说MySQL两个最常用的存储引擎,MyISAM和InnoDB。照自己的理解,把一些知识点总结出来,不只说知识点,多讲“为什么”。
我试图在 MariaDB(MySQL)上运行一个简单的连接查询,但性能简直糟糕透了。下面将介绍我是如何通过两个简单的 Unix 命令,将查询时间从 380 小时降到 12 小时以下的。 下面就是这个查询,它是 GHTorrent 分析的一部分,我使用了关系在线分析处理框架 simple-rolap 来实现这个分析。
|
|
select distinct project_commits.project_id, date_format(created_at, '%x%v1') as week_commit from project_commits left join commits on project_commits.commit_id = commits.id; |
两个连接字段都有索引。不过,MariaDB 是通过对 project_commits 进行全表扫描和对 commits 进行索引查找来实现连接的。这可以从 EXPLAIN 的输出看出来。
在聊数据库与缓存一致性问题之前,先聊聊数据库主库与从库的一致性问题。 问:常见的数据库集群架构如何? 答:一主多从,主从同步,读写分离。
缓存与数据库的操作时序,不管是《5.2 Cache Aside Pattern》中的方案,还是《5.1 究竟先操作缓存,还是数据库?》中的方案,都会遇到缓存与数据库不一致的问题。今天聊聊这个问题。